3,818 research outputs found

    Human behavior in Prisoner's Dilemma experiments suppresses network reciprocity

    Get PDF
    During the last few years, much research has been devoted to strategic interactions on complex networks. In this context, the Prisoner's Dilemma has become a paradigmatic model, and it has been established that imitative evolutionary dynamics lead to very different outcomes depending on the details of the network. We here report that when one takes into account the real behavior of people observed in the experiments, both at the mean-field level and on utterly different networks the observed level of cooperation is the same. We thus show that when human subjects interact in an heterogeneous mix including cooperators, defectors and moody conditional cooperators, the structure of the population does not promote or inhibit cooperation with respect to a well mixed population.Comment: 5 Pages including 4 figures. Submitted for publicatio

    IGR J19294+1816: a new Be-X ray binary revealed through infrared spectroscopy

    Get PDF
    The aim of this work is to characterize the counterpart to the INTEGRAL High Mass X-ray Binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H band spectra of the selected counterpart acquired with the NICS instrument mounted on the Telescopio Nazionale Galileo (TNG) 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE and NEOWISE databases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d=11±1d = 11 \pm 1 kpc, and luminosities of the order of 10363710^{36-37} erg s1^{-1}, displaying the typical behaviour of a Be X-ray binary.Comment: 8 pages, 6 figures, accepted to be published in MNRA

    How different Fermi surface maps emerge in photoemission from Bi2212

    Full text link
    We report angle-resolved photoemission spectra (ARPES) from the Fermi energy (EFE_F) over a large area of the (kx,kyk_x,k_y) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of accord between theory and experiment and clarify how myriad Fermi surface (FS) maps emerge in ARPES under various experimental conditions. The energy and polarization dependences of the ARPES matrix element help disentangle primary contributions to the spectrum due to the pristine lattice from those arising from modulations of the underlying tetragonal symmetry and provide a route for separating closely placed FS sheets in low dimensional materials.Comment: submitted to PR

    Interactions between sub-10 nm iron and cerium oxide nanoparticles and 3T3 fibroblasts : the role of the coating and aggregation state

    Full text link
    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of the cerium and iron oxide sub-10 nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol-1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease of the mitochondrial activity for cerium concentrations above 5 mM (equivalent to 0.8 g L-1). We also observe that the citrate-coated particles are internalized by the cells in large amounts, typically 250 pg per cell after a 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (< 30 pg per cell). The strong uptake shown by the citrate-coated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.Comment: 9 figures, 2 table

    An XMM-Newton view of FeK{\alpha} in HMXBs

    Full text link
    We present a comprehensive analysis of the whole sample of available XMM-Newton observations of High Mass X-ray Binaries (HMXBs) until August, 2013, focusing on the FeK{\alpha} emission line. This line is a key tool to better understand the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We have collected observations from 46 HMXBs, detecting FeK{\alpha} in 21 of them. We have used the standard classification of HMXBs to divide the sample in different groups. We find that: (1) FeK{\alpha} is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states lower than FeXVIII. (2) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (3) FeK{\alpha} is narrow (width lower than 0.15keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering and Doppler shifts (with velocities of the reprocessing material V=1000-2000 km/s). (4) The equivalent hydrogen column (NH) directly correlates with the EW of FeK{\alpha}, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. The obtained results clearly point to a very important contribution of the donors wind in the FeK{\alpha} emission and the absorption when the donor is a supergiant massive star.Comment: Accepted for publication in A&A. 13 pages, 16 figures + Appendice

    Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia

    Full text link
    We have studied the magnetic and power absorption properties of three samples of CoFe2O4 nanoparticles with sizes from 5 to 12 nm prepared by thermal decomposition of Fe (acac)3 and Co(acac)2 at high temperatures. The blocking temperatures TB estimated from magnetization M(T) curves spanned the range 180 < TB < 320 K, reflecting the large magnetocrystalline anisotropy of these nanoparticles. Accordingly, high coercive fields HC \approx 1.4 - 1.7 T were observed at low temperatures. Specific Power Absorption (SPA) experiments carried out in ac magnetic fields indicated that, besides particle volume, the effective magnetic anisotropy is a key parameter determining the absorption efficiency. SPA values as high as 98 W/g were obtained for nanoparticles with average size of \approx12 nm.Comment: 4 pages, 3 figure

    Measurement of 1323 and 1487 keV resonances in 15N({\alpha}, {\gamma})19F with the recoil separator ERNA

    Get PDF
    The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({\alpha},{\gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {\alpha} and {\gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({\alpha},{\gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {\Gamma}_{\gamma} and {\Gamma}_{\alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {\Gamma}_{\alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({\alpha},{\gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.Comment: 8 pages, 11 figures. Accepted for publication in PR
    corecore